Ledger Database Hacked, Leaks 1 Million Customer Emails – July 29

Ethereum founder Vitalik Buterin has expressed his concerns in a recent interview, regarding DeFi protocols and smart contract risk. In the interview …

ajax loader

BTC 29 July 300x73 1

📈 30 Second Cryptocurrency Price Summary

Current Bitcoin Price: $11,014

Bitcoin price is holding above the $11,000 mark today, as price action cools off from its recent run.

Top-20 altcoins have have a great recovery over the last 24 hours of trading, with all coins except one making a move to the upside. XRP had a 9% r ise, while Ethereum gained 3%. EOS leads the way with a gain of almost 10%.

Top Stories for July 29, 2020 🔥

👉 Ledger Database Hacked, Leaks 1 Million Customer Emails

Hardware wallet manufacturer Ledger have fallen victim to a database hack, which resulted in the leak of 1 million customer email addresses and personal documents.

The hack occurred last month, but was revealed today by the company in a press release outlining the breach and Ledger’s subsequent actions.

Private keys and recovery phrases were unaffected by the hack, which only targeted the company’s marketing and e-commerce database.

👉 Cardano’s Shelley Hard-Fork to Occur Today, Introducing Stake Pools

The Cardano blockchain is scheduled to undergo its Shelley hard-fork today, with the team reporting that they expect no interruptions to the network.

The fork will introduce new features such as staking pools, delegation and rewards. Cardano founder Charles Hoskinson says he expects to see thousands of dApps and projects existing on the Cardano within a year’s time.

👉 Ethereum Founder Believes DeFi Users Underestimate Smart-Contract Risk

Ethereum founder Vitalik Buterin has expressed his concerns in a recent interview, regarding DeFi protocols and smart contract risk.

In the interview, Buterin explained that DeFi protocols still had a much greater chance of “breaking” that traditional finance platforms, and that even audited platforms still carried plenty of risk.

He continued to warn that users should not put their life savings into DeFi, as well as warning against the sustainability of DeFi yield farming.

The post Ledger Database Hacked, Leaks 1 Million Customer Emails – July 29 appeared first on BitcoinPrice.com.

Source: Ledger Database Hacked, Leaks 1 Million Customer Emails – July 29

Related Posts:

  • No Related Posts

Is blockchain the enabler of cross-border energy trading?

Also, the uptake of sensors and smart devices has set the electricity sector firmly on the edge of digitalisation. Where does blockchain fit into this …

The introduction of high volumes of renewable generation from decentralised sources demands new tools to maintain the safe operation and stability of the grid. Also, the uptake of sensors and smart devices has set the electricity sector firmly on the edge of digitalisation. Where does blockchain fit into this unfolding smart grid scenario?

By Prof MTE Kahn, Research Chair: Energy, Cape Peninsula University of Technology, South Africa

This article first appeared in ESI Africa Issue 3-2020.

Read the full digimag here or subscribe to receive a print copy here.

The rapid expansion of digitalisation in the energy sector unlocks flexibility and will accelerate the transition into a smarter energy system. In order for the energy sector to become more digital and embrace new smart technology, such as blockchain, the energy market needs to adjust and become more flexible.

Blockchain is a distributed ledger technology where every full node in the network downloads a copy of the same ledger. The ledger is a collection of all transactions ever made on the blockchain. The original concept was to have all transactions on the blockchain viewable to all nodes in the network. All nodes in the network need to verify a transaction for it to be completed.

No third party verifies transactions, meaning that the power is distributed through the network. The transactions are stored in series in chronological order of blocks, as soon as the transaction is verified. The blocks are then put together creating a chain of blocks, also known as a blockchain. Once a block is added to the chain it cannot be changed, making the blockchain irreversible.

Figure 1 illustrates an example of a blockchain. The main chain (purple) consists of the longest series of blocks from the genesis block to the current block. Orphan blocks (white) exist outside the main chain and can be from a fork. [2].

Figure 1: Blockchain example [2]

There are mainly two types of blockchains: the first is a public blockchain and the second is a private blockchain. A public blockchain means that anyone that downloads the blockchain is able to view transactions, verify transactions and make transactions. The first blockchain created and used for Bitcoin is called a public blockchain. When viewing transactions, the addresses of the ones making transactions are anonymous.

The information showing is amount transacted and time of transaction. In contrast to public blockchains, there are also private blockchains. In private blockchains, nodes have to be accepted into the network and not every node can view, make and verify transactions. These networks are sometimes called consortiums.

Resolving security issues with blockchain

The energy sector is facing several challenges associated with integrating distributed renewable energy sources into the existing centralised energy system. Digital opportunities such as the Internet of Things (IoT) and blockchain are acting as enablers for the creation of a decentralised energy system. Blockchain is being tested for several applications in the energy sector as a means of resolving security and transparency linked issues; as well as for improving the efficiency through the provision of a decentralised authority concept, thus creating a win-win situation for all the stakeholders. Figure 2 shows blockchain energy applications in private and public domains.

Figure 2: Difference between public and private blockchain [6]

In energy trading applications either at the wholesale or local level, such as peer-to-peer (P2P) energy trading, blockchain energy applications will provide a reliable verification process for trading without needing authentication from a third party. Having a standardised global blockchain infrastructure can also provide frictionless cross-border energy trading. This will act as an enabler for prosumers to participate in the local energy market where they can rely on technology which has the potential to make the transactions faster, simpler, and cheaper than traditional centralised energy systems.

The technology is also being tested in electric vehicle (EV) charging facilities where it will enable access to all charging points for EV drivers by creating a network of EVs and charging facilities. The idea is to create an easy payment system that is also efficient. This in turn will advance the platforms for energy generation and storage and the emergence of local energy communities (LECs).

Figure 3: Blockchain energy applications [6]

For blockchain to succeed in the energy sector the scalability problem must be solved and the market needs to be properly analysed. For example, who will pay who, when and how, and how often must transactions be made? For one city, a network could be built and tested repeatedly, but to test on a larger scale might be challenging. The energy industry has a lot of potential to become more decentralised as smart grids, small-scale energy production and LECs are being developed.

Use cases promote interesting scenarios

Today’s systems are based on the old billing and even smart meter systems cannot handle these changes and blockchain-based systems could be the only way of making it possible. An interesting use of the technology is to create a more flexible grid, allowing the private sale of excess electricity produced by e.g. solar panels to a neighbour to charge their EV. The other way around would be selling electricity from EVs to neighbours having a shortfall of production.

The goal is to create LECs that can trade their own generated or stored energy with each other. These LECs can also decide where they want to buy their energy from. This can be directly from electricity generators without the electricity supplier but this can also be from privately owned wind or solar farms. Consumers that actively participate in the energy ecosystem, by storing energy and/or generating electricity with solar panels or a wind turbine or actively joining an LEC, will be named prosumers. Consumers that are not part of a LEC will still be called consumers and they will get their energy through a traditional energy supplier.

For blockchain to succeed in the energy sector the scalability problem must be solved and the market needs to be properly analysed.

Prosumers will be able to join an LEC, which can be the neighbourhood, a business district or a family who live in different areas of a country. Prosumers will be able to join any LEC they want. Where the LEC buys electricity is determined by the LEC, which means if the LEC members want to buy cheap coal energy they can do so. The prosumers of an LEC will be able to sell their own generated electricity inside the LEC too.

Eventually, consumers are only getting raw energy prices for their generated electricity purchased. Trading from P2P inside a LEC will result in a higher reward for selling self-generated energy from rooftop solar or a small solar farm, or industrial decentralised energy sources. Blockchain would provide a transparent system to buy and sell energy from and to whomever without the need of a middleman (electricity supplier).

Off-chain transactions

A possible long-term scalability solution is the use of state channels, also called off-chain networks or payment channels. This is a channel between two actors that conduct transactions between each other. At any time suggested any of the actors can connect to the blockchain to verify the transactions made.

Each actor would place cryptocurrency into a smart contract and then send transactions through the state channel. This would decrease the cost per transaction, compared to making all transactions on the blockchain. For every state channel, an amount of cryptocurrency is set aside for every new channel. This cryptocurrency is locked in the channel until the channel is closed.

Final word of advice

When relating to blockchain as an innovation in the energy sector, it is important to remember that the expectations around blockchain are high at the moment and this affects how blockchain is discussed. Also, it should be considered that blockchain is in its incubation phase, and blockchain solutions developed today will undergo some metamorphosis in the future.

The energy sector is a landscape of many actors, and blockchain can be a tool for creating a market for both new innovations and old ones taking new shapes in the smart cities of the fourth industrial revolution. Real value can be gained when working together across industry and company borders. This article recognises the potential in using blockchain in the energy sector for high frequency trading and the emergence of LECs.

To conclude, the LEC using blockchain for energy has two major benefits for its prosumers:

1. Lower energy costs as the LEC will buy energy directly from independent generators, including Eskom, municipalities, or other LECs. This means that where LECs produce excess renewable energy in the community, there is no energy supplier to take a cut of the money. Resulting in lower prices per kWh for those average costs.

2. Prosumers are able to actively participate in the energy market. They can use their storage for balancing purposes in the LEC and they can sell their energy for a higher price than selling it back to an energy supplier. ESI


[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system”, November 2013

[2] Blockchain.svg – Wikimedia Commons. Accessed online on 9 November 2019

[3] L. Hagström and O. Dahlquist, “UPTEC STS 17023 Examensarbete,” 2017

[4] “What is Blockchain Technology? A Step-by-Step Guide for Beginners.” Accessed online on 9 November 2019

[5] A. Khatoon, P. Verma, J. Southernwood, B. Massey, and P. Corcoran, “Blockchain in Energy Efficiency: Potential Applications and Benefits,” Energies, vol. 12, no. 17, p. 3317, 2019

[6] “Blockchain Meets Energy.” [Online] Fsr.eui.eu, Florence School of Regulation, June 2019

Related Posts:

  • No Related Posts

Ethereum Turns Five. Here’s What Vitalik Buterin Expects to Happen in Next Five Years

This was preceded by the Ethereum initial coin offering (ICO) that raised close to $18 mln back in 2014. The genesis block includes all transactions …

Five years ago, Ethereum’s genesis block was mined into existence on July 30, 2015.

image by @etherchain_org

In only seven months, Ether went on to become the second-biggest cryptocurrency that firmly holds onto this spot up to this day.

A retrospective look

Ethereum was launched with an ambitious goal — to decentralize everything on the internet with the help of programmable smart contracts.

This was preceded by the Ethereum initial coin offering (ICO) that raised close to $18 mln back in 2014. The genesis block includes all transactions from the largest cryptographic token sale of that time.

Ethereum miners were initially able to get 5 ETH per each block, but the reward was then reduced to 3TH after the activation of the Byzantium hard fork back in October 2017. This was followed by the Constantinople update that further reduced the block reward to 2 ETH in February 2019.

Frontier, the “barebone” version of Ethereum, initially had the gas limit set 5,000. Back in June, miners voted to increase it from 10 mln to 12.5 mln so that the network can handle 44 transactions per second.

As reported by U.Today, the Ethereum blockchain surpassed 10 mln blocks back in May, which close to 15 zettahashes of power.

Five years from now

After the ICO mania, decentralized finance (DeFi) emerged as a new frontier for Ethereum, reinvigorating interest in the project.

While sleeping on the “Unchained” podcast about Ethereum’s next five years, its co-founder Vitalik Buterin jokingly mentioned that getting Ethereum 2.0 done would be “really important”. The proof-of-stake upgrade, which is now expected to go live in late 2020, has suffered multiple delays.

Overall, he expects Ethereum to make great strides when it comes to mainstream adoption, becoming a regular part of people’s lives:

“I think getting the technology to that point where you actually have like lots of people from in lots of places from around the world deriving value from Ethereum and just getting both of those two things done, I think, would be a great place to be.”

Related Posts:

  • No Related Posts

CoinDesk Live Recap: The DAO Hack Is Still a Mystery

The fork split the blockchain in two, Ethereum and Ethereum Classic, each with differing views of the “immutability” of distributed ledger systems.

The DAO exploit of 2016 was a $55 million heist that forever altered Ethereum’s trajectory.

On Tuesday, CoinDesk Live gathered a handful of blockchain veterans to look back at the incident. Cornell computer science professor Emin Gün Sirer, white-hat hacker Griff Green and MyEtherWallet founder Taylor Monahan were joined by Bloomberg reporter Matt Leising to unpack the hack’s lingering mysteries.

Beyond leading to a contentious hard fork and the creation of Ethereum Classic, The DAO hack laid bare core issues relating to blockchain development.

Related: CoinDesk Live Recap: Ethereum’s DeFi Luminaries Discuss What’s Next

As Gün Sirer put it on Tuesday: “Is code law or do these systems serve human purposes?”

To recap: After 3.6 million ether (ETH) was stolen from The DAO in June 2016, Ethereum developers eventually reached consensus to turn back the clock, reverse the theft transactions and restore users’ lost funds. This rollback could only be implemented through a network-wide change called a hard fork. The fork split the blockchain in two, Ethereum and Ethereum Classic, each with differing views of the “immutability” of distributed ledger systems.

Tuesday’s conversation offered first-person tales of the hack and its aftermath.

“A group of trusted Ethereum hackers got together to try to stop the bleeding,” Green said. “We weren’t very successful at stopping the bleeding, honestly, but at one point it just stopped. Several hours later the hacker only took about 30% of the ether in The Dao and then just stopped – and we weren’t sure exactly why.”

Related: Market Wrap: Bitcoin Sticks to $11,000; Derivatives, DeFi Keep Growing

The group figured out how to hack the system as well, Green said, protecting the remaining 70%.

Four years later, the lesson learned for blockchain protocols beyond Ethereum is that if you don’t like the “law” of a particular chain, “you can always fork out,” said Monahan, now CEO of MyCrypto.

Gün Sirer agreed. “These monetary systems only have value to the extent they serve people. Code is not law, code is buggy, law is law,” he said.

The CoinDesk Live session was the second in a five-day run of live-streamed conversations. It comes as part of CoinDesk’s cross-platform Ethereum at Five series.

Related Stories

Related Posts:

  • No Related Posts

Cardano’s Shelley hard fork, five years in the making, goes live

IOHK said in a press release that it expects to reach around 1,000 stake pools; this is based on the number of stake pools opened during its testnet.

After five years of development, Cardano’s next upgrade is finally here.

The network implemented its latest hardfork, Shelley, today. This upgrades the network from its prior iteration, Byron. Shelley’s introduces stake pools and delegations.

Staking on Shelley involves holding large amounts of its native currency, ADA. The benefit to doing so is that there’s a greater chance you could earn yet more ADA in rewards for validating the network. All of this is powered by its Ouroboros protocol, which chooses who gets to add the next block to the Cardano blockchain.

You can also operate something called a stake pool, which lets you stake other users’ coins on their behalf or delegate their coins so that someone else can stake them. IOHK said in a press release that it expects to reach around 1,000 stake pools; this is based on the number of stake pools opened during its testnet. Upon launch, 444 stake pools are operational on Cardano.

The first block for Shelley was validated on a testnet version of the new chain on April 27. A testnet is like a beta version of a blockchain. Usually, testnet blockchains don’t involve real money. But IOHK ran an incentivized testnet for Shelley, meaning that its users were playing for keeps.

Now it’s moved onto mainnet, onward: “It’s a monumental achievement, but this doesn’t mean we’ll be standing still, and we’re looking forward to the delivery of the Voltaire and Goguen phases of the Cardano roadmap, which will see robust governance arrangements and smart contracts functionality put in place this year,” said Aparna Jue, IOHK’s product director, in a statement.

Charles Hoskinson, the CEO of IOHK, added: “This time next year we could see hundreds of assets and decentralized applications running on Cardano.”


The views and opinions expressed by the author are for informational purposes only and do not constitute financial, investment, or other advice.

Related Posts:

  • No Related Posts